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1 Dynamic Semantics

Dynamic semantics is a perspective on natural language semantics that em-
phasises the growth of information in time. It is an approach to meaning
representation where pieces of text or discourse are viewed as instructions to
update an existing context with new information, with an updated context
as result. In a slogan: meaning is context change potential. Prime source
of inspiration for this dynamic turn is the way in which the semantics of
imperative programming languages like C is defined.

It is important to be aware of the abstractness of the perspective, to guard
against various non-sequiturs. For one thing, one could easily think that
dynamic semantics or update semantics is committed, at least in part, to
an internalist idea of semantics, since the information states are ‘internal’,
in the sense that they are wholly contained in the individual mind or, if
you wish, in the individual brain. In other words, one might think that
the information states of dynamic semantics are what Putnam [Put75] calls
‘states in the sense of methodological solipsism’. See the entries: Scientific
Realism, Computational Theory of Mind, Mental Content. However, the
general framework says nothing about what the states are. The state could
very well include the environment in which the receiver is embedded and
thus contain an ‘external’ component.

A second possible misunderstanding is that dynamic semantics or update
semantics is in complete opposition to classical truth conditional semantics
(compare the entries: Classical Logic, First-order Model Theory). In fact,
as further specification of the format will show, what dynamic semantics
provides is a generalization of truth conditional semantics rather than a
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radically different alternative. The classical meanings become the precon-
ditions for success of the discourse actions. Dynamic semanticists do hold
that compositional meanings have the nature of functions or relations, while
the classical meanings have the status of projections of the compositional
meanings.

The point of the use of an abstract framework is not to give empirical pre-
dictions. This is the task of specific realizations inside the framework. The
framework of Dynamic Semantics (i) provides a direction of thinking and (ii)
allows us to import methods from the mathematical study of the framework.
It follows that the question whether natural language meaning is intrinsi-
cally dynamic does not have an empirical answer. Still, what can be said
is that the study of interpretation as a temporal process has proven quite
fruitful and rewarding.

Since Dynamic Semantics focuses on the discourse actions of sender and
receiver, it is, in a sense, close to use-oriented approaches to meaning in
Philosophy, such as the work of Wittgenstein and Dummett. However, easy
identifications between Dynamic Semantics and these approaches are to be
avoided. Dynamic Semantics as an abstract framework is compatible with
many philosophical ways of viewing meaning and interpretation. Dynamic
semantics aims to model meaning and interpretation. You can do that with-
out answering broader philosophical questions, such as the question what it
is that makes it possible for the subject to be related to these meanings
at all. E.g., in Dynamic Predicate Logic we take the meaning of horse as
given without saying what constitutes the subject’s having the concept of
horse; we just stipulate the subject has it. This is not to say such questions
— which are at the center of the work of Wittgenstein and Dummett —
should not ultimately be answered, it is just to say that a model can be of
interest even if it does not answer them. Dynamic Semantics tries to give a
systematic and compositional account of meaning. This makes it markedly
different in spirit from Wittgenstein’s later Philosophy.

2 Meanings in Dynamic Semantics

One approach to dynamic semantics is Discourse Representation Theory
or DRT. This was initiated by Hans Kamp in his paper [Kam81]. Closely
related to Kamp’s approach is Irene Heim’s File Change Semantics (see
[Hei83a]) and the Discourse Semantics of Pieter Seuren (see [Seu85]). Mean-
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ings in DRT are a kind of dynamical databases called discourse representa-
tion structures or drs’s. Since drs’s can be viewed as rudiments of mental
representation, they also have a cognitive appeal [Wer00].

In the approach associated to Discourse Representation Theory, meanings
are types of things that are used in the process of fitting pieces of informa-
tion together and contain items that assist in the fitting. One could compare
this to the forms of pieces of a jigsaw puzzle: the form of an individual piece
is connected to the possible integration of the piece in the puzzle as a whole.
A database taken by itself is a static object: it is the result of an informa-
tion gathering activity. However as soon as one tries to give a compositional
semantics for DRT it becomes clear that the true semantic objects have a dy-
namic side: they contain instructions for merging the databases. Discourse
Representation Theory has a separate entry in the Stanford Encyclopedia;
here we will concentrate on what it has in common with a second approach
that takes meanings to be resetting actions or update functions.

In this second approach to dynamic semantics, associated with Dynamic
Predicate Logic (see [GS91a]), the dynamic meanings are types of actions,
things that are individuated by the changes they effect. The basic idea of the
relational/update approach in dynamic semantics is that a meaning should
be considered as the action type of an action that modifies the receiver’s
information state. Some basic work in the Dynamic Predicate Logic or
DPL-tradition is to be found in [GS91a], [GS91b], [Mus91], [Dek93], [Ver93a],
[Eij94], [Ver94], [Gro95], [Kra95], [Ber96], [GSV96], [HV96], [Alo97], [Bea97],
[MBV97]. A closely related approach is Update Semantics (see [Vel91]). A
unification of DPL and Update Semantics is given in [GSV96].

The varieties of dynamic semantics have led to a modification and exten-
sion of the model theoretic approach to natural language semantics in the
style of Richard Montague [Mon74a, Mon74b, Mon73] (compare the entry:
Logical Form). This new version of Montague Grammar is called Dynamic
Montague Grammar. See [GS90, Mus96] and below.

3 Context

Semanticists may mean various things when they talk about context (com-
pare the entries: Epistemic Contextualism, Indexicals), and these different
views engender varieties of dynamic semantics, and sometimes interesting
combinations. There has been a variety of concerns: constructing an appro-
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priate mechanism for pronominal reference (compare the entries: Anaphora,
Reference), explaining the semantics of conditionals (compare the entries:
Conditionals, The Logic of Conditionals), giving a semantic treatment of
the distinction between assertion and presupposition (compare the entries:
Assertion, Speech Acts, Implicature, Pragmatics) and developing a theory
of ‘presupposition projection’, explaining how the interpretation of discourse
is influenced and guided by the common ground that exists between speaker
and hearer, and developing a theory of how this common ground develops
as the discourse proceeds (compare the entries: Pragmatics, Implicature).

Context plays a role in two distinct oppositions. The first opposition is
the duality between context and that what modifies the context. Here the
context is the information state, or, say, a suitable abstraction from the in-
formation state (compare the entry: Semantic Conceptions of Information).
The context modifier is the information received. The information cannot
be received without the correct kind of presupposed information state. The
proper analogues in predicate logic (compare the entries: Classical Logic,
First-order Model Theory) are as follows. The information state is an as-
signment (environment) or a set of assignments. The information received
is a set of assignments. The second opposition is the duality of context and
content. Here the context is something like the storage capacity of the re-
ceiver. The content is the information stored. Thus, e.g., the context in this
sense could be a set of discourse referents or files. The content would then
be some set of assignments or, perhaps, world/assignment pairs on these
referents.

Here is an example to illustrate the distinction. Suppose we view an in-
formation state as a pair of a finite set of discourse referents and a set of
world/assignment pairs, where the assignments have as domain the given set
of referents. Such a state would be a context-in-the-first-sense and the set of
referents would be a context-in-the-second-sense. One basic kind of update
would be update of content: here we constrain the set of world/assignment
pairs, and leave the set of referents constant. A second basic kind of update
would be extension of the set of referents: we extend our storage capac-
ity. We modify the given world/assignments pairs to pairs of worlds and
extended assignments, where our extended assignments are constrained by
the old ones, but take all possible values on the new referents. Thus, the
update process in our example is two-dimensional: we have both update of
content and update of context-in-the-second-sense.
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4 Interpretation as a Process

Interpretation of declarative sentences can be viewed as a product or as a
process. In the product perspective, one focusses on the notion of truth in a
given situation. In the process perspective, interpretation of a proposition is
viewed as an information updating step that allows us to replace a given state
of knowledge by a new,more accurate knowledge state. Dynamic semantics
focuses on interpretation as a process.

4.1 Propositional Logic as an Update Logic

Propositional logic (the logic of negation, disjunction and conjunction) can
be viewed as an update logic, as follows. Consider the case where we have
three basic propositions p, q and r, and we know nothing about their truth.
Then there are eight possibilities {pqr, pqr, pqr, pqr, pqr, pqr, pqr, pqr}. Here
pqr should be read as: neither of p, q, r is true, pqr as: p is true but q
and r are false, and so on. If now ¬p (‘not p’) is announced, four of these
disappear, and we are left with {pqr, pqr, pqr, pqr}. If next q ∨ ¬r (‘q or
not r’) is announced, the possibility pqr gets ruled out, and we are left with
{pqr, pqr, pqr}. And so on. We can view the meaning of propositions like
¬p and q ∨ ¬r as maps from sets of possibilities to subsets of these.

Sets of possibilities represent states of knowledge. In the example,

{pqr, pqr, pqr, pqr, pqr, pqr, pqr, pqr}

represents the state of complete ignorance about propositions p,q,r. Single-
ton sets like {pqr} represent states of full knowledge about the propositions,
and the empty set ∅ represents the inconsistent state that results from pro-
cessing incompatible statements about p, q and r. Here are the dynamic
meanings spelled out of the statements of our propositional language:

• Atomic statements. These are p, q, r. The corresponding update action
is to select those possibilities from the current context where the letter
is not struck out (overlined).

• Negated statements. These are of the form ¬φ. The corresponding
update action os to select those possibilities from the current context
that form the complement of the set of possibilities selected by the φ
statement.
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• Conjunctions of statements. These are of the form φ ∧ ψ. The corre-
sponding update action is to select those possibilities from the current
context that form the intersection of the selections from the curent
context made by the φ and the ψ statements.

• Disjunctions of statements. These are of the form φ ∨ ψ. The corre-
sponding update action is to select those possibilities from the current
context that form the union of the selections made by the φ and the
ψ statements.

This gives the meanings of the propositional connectives, as operations from
an old context representing a state of knowledge to a new context represent-
ing the state of knowledge that results from processing the propositional
information.

As a concrete example, consider the game of Mastermind, played with three
positions and four colors red, green, blue, yellow (see also [Ben96]). You
are trying to guess a secret code, which is expressed as a sequence of three
colours, so the code is one of:

RGB RBG GBR GRB BRG BGR
YGB YBG GBY GYB BYG BGY
RYB RBY YBR YRB BRY BYR
RGY RYG GYR GRY YRG YGR

Suppose the secret code is ‘red, blue, yellow’. Since you do not know this,
none of the above 24 possibilities is ruled out yet for you. Assume your
initial guess is ‘red, green, blue’.

Now the feedback you will get, according to the rules of the game, is in the
form of propositional information. Black marks indicate correct colours in
correct positions, grey marks indicate correct colours in wrong positions. So
the feedback you will get is one black mark (red is in the correct position)
and one grey mark (blue is in the wrong position). The propositional formula
b1 ∧ g1 (‘one black and one grey’) expresses this. This rules out all but six
possibilies, for you reason as follows: if red is in correct position, then the
code is either red blue yellow (RBY) or red yellow green (RYG); if green is
in correct position, then the code is either BGR or YGR; if blue is in correct
position then the code is either YRB or GYB. What this means is that you
interpret the feedback b1 ∧ g1 as a map from the set of all positions to the
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set
{RBY,RY G,BGR, Y GR, Y RB,GY B}

Suppose your next guess is ‘yellow, green, red’. The feedback now is g2, for
red and yellow occur, but in incorrect positions. This rules out any of the
six possibilities with a colour in the same position as in the guess, in other
words, it rules out

{RY G,BGR, Y GR, Y RB}

and you are left with the set of possibilities {RBY,GY B}. Your final guesss
‘green yellow blue’ sollicits the feedback g2, for blue and yellow occur, but
in wrong positions, and your final update yields {RBY }. The fact that you
are left with a singleton set indicates that you now know the secret code.

4.2 Programming Statements and their Execution

Programming statements of imperative languages like C are interpreted (or
‘executed’) in the context of a machine state, where machine states can
be viewed as allocations of values to registers. Assume the registers are
named by variables x, y, z, and that the contents of the registers are natural
numbers. Then the following is a machine state:

x 12
y 117
z 3

If the C statement z = x is executed (or ‘interpreted’) in this state, the
result is a new machine state:

x 12
y 117
z 12

If the sequence of statements x = y; y = z is executed in this state, the
result is:

x 117
y 12
z 12
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This illustrates that the result of the sequence z = x;x = y; y = z is that
the values of x and y are swapped, with the side effect that the old value of
z gets lost. In other words, the meaning of the program z = x;x = y; y = z
can be viewed as as map from an input machine state s to an output machine
state s′ that differs from s in the fact that s(x) (the value of x in state s)
and s(y) are swapped, and that s′(z) (the new value of z) equals s(y).

4.3 Quantifiers as Programs

Now consider the existential quantifier ‘there exists x such that A’. Suppose
we add this quantifier to a programming language like C. What would be its
meaning? It would be an instruction to replace the old value of x by some
arbitrary new value, where the new value has property A. We can decompose
this into a part ‘there exists x’ and a test ‘A’, where the parts are glued
together by sequential composition: ‘∃x;A’. Focusing on the part ‘∃x’, what
would be its natural meaning? An instruction to replace the old value of x
by some arbitrary new value. This is again a relation between input states
and output states, but the difference with definite assignments like x = y is
that now the relation is not a function. In fact, this relational meaning of
quantifiers shows up in the well known Tarski-style truth definition for first
order logic (compare the entry: Tarski’s Truth Definitions):

∃xφ is true in a model M , under a variable assignment α iff (if and only
if) there is some β with β different from α at most in the value that gets
assigned to x, and φ s true in M under assigment β.

Implicit in this is a relation [x] that holds between α and β iff for all variables
y it is the case that y 6≡ x implies α(y) = β(y).

5 Dynamic Predicate Logic

The scope conventions of ordinary predicate logic (compare the entry: First-
order Model Theory) are such that the scope of a quantifier is always con-
fined to the formula in which it occurs as its main connective. In other
words, in a parse tree of any formula, an occurrence of a quantifier Qx at a
node ν will only bind occurrences of x occurring below ν in the tree. Now
consider the following discourse.

A man comes in. He sees a dog. He smiles.

8



How would we paraphrase this discourse in predicate logic? Well, we could
translate A man comes in as

(1) ∃x (man(x) ∧ comes-in(x)).

Then the obvious move would be to translate A man comes in. He sees
a dog into:

(2) ∃x (man(x) ∧ comes-in(x)) ∧ ∃y (dog(y) ∧ sees(x, y)).

However, this cannot be correct, since the second occurrence of x is not
bound by the occurrence of ∃x in this formula. The right translation is:

(3) ∃x (man(x) ∧ comes-in(x) ∧ ∃y (dog(y) ∧ sees(x, y))).

So far, so good. There is nothing wrong, per se, with (3). It just that, unlike
(2), it is not produced in a compositional way from (1), since rearranging
the brackets is not an operation that can be reflected at the semantical level
(compare the entry: Compositionality). Similarly, if we want to translate
our full sample discourse we have to ‘break open’ our previous results again
to produce:

(4) ∃x (man(x) ∧ comes-in(x) ∧ ∃y (dog(y) ∧ sees(x, y)) ∧ smiles(x)).

Thus, if we think of translation of discourses as a process, we cannot, in
general, produce intermediate translations: we are forced to translate the
discourse as a whole. For another example of this, consider Geach’s donkey
sentence (compare the entry: Anaphora):

If a farmer owns a donkey, he beats it.

The obvious translation into predicate logic would be:

(∃x (farmer(x) ∧ ∃y (donkey(y) ∧ owns(x, y)))→ beats(x, y)).

However, again the last occurrences of x and y will be free in this para-
phrase. So the paraphrase will not capture the intended meaning. The
correct translation would be something like:

∀x (farmer(x)→ ∀y ((donkey(y) ∧ owns(x, y))→ beats(x, y))).

This last translation is clearly not obtained in a compositional way from
Geach’s donkey sentence (see [Gea80], and the entry on Anaphora).
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Dynamic Predicate Logic (DPL) was invented by Jeroen Groenendijk and
Martin Stokhof [GS91a] to make compositional translation of examples such
as the ones above possible. It is the simplest possible variant of predicate
logic in which we have existential quantifiers with extendible scope. The
universal quantifiers on the other hand are the familiar ones of predicate
logic. DPL is a theory of testing and resetting of variables/registers. These
are fundamental operations in computer science. Thus, apart from its use
in Logical Semantics, DPL is a simple theory of these basic operations.

To understand the basic idea behind DPL, look at the example A man comes
in. He sees a dog again. Why is it the case that in ordinary predicate
logic we cannot take the meaning associated with A man comes in and com-
bine it with the meaning of He sees a dog to obtain the meaning of A man
comes in. He sees a dog? Well, the meaning of A man comes in is a
set of assignments. Suppose e.g. there is a man in the domain of discourse
entering some specified place. Then, a man comes in would be true. Its
meaning would be the set of all assignments on some given set of variables.
There is no way to get at the object or objects introduced by the sentence,
just by looking at this set. It could also be the meaning of A dog sees a
cat. What we need is an alternative meaning that ‘remembers’ and ‘pro-
duces’ the man introduced in the discourse.

We get our clue on how to do this from staring at the definition of existen-
tial quantification in ordinary predicate logic. Suppose we work with total
assignments on a fixed set of variables VAR over a fixed domain D. Let
the meaning of P (x) be the set of assignments F . Thus, F is the set of all
assigments α with property that αx is an object satisfying P .

Define
α[x]β :⇔ ∀v ∈ VAR \ {x} αv = βv.

So [x] is the relation ‘β is a result of resetting α on x’. Now the meaning,
say G, of ∃x P (x), will be:

G := {α∈ASS | ∃β∈F α[x]β}.

Thus, G is the set of assignments that can be successfully reset w.r.t. x to
an assignment in F . Viewed differently G is the domain of the relation R
given by

αRβ :⇔ α[x]β and β ∈ F.

We could say that G is the precondition for the resetting action R. Now
the idea of DPL is to take the meaning of ∃x P (x) not the precondition G
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but the resetting action R. In this way we do not lose information since G
can always be obtained from R. Moreover, the range elements β of R are
constrained to be in F and have x-values in the interpretation of P . These
are precisely the x’s that do P , that we were looking for.

More generally, we take as DPL-meanings binary relations between assign-
ments. Such relations can be seen as (modelings of) resetting actions. This
is an instance of a well-known, admittedly simplistic way, of modeling ac-
tions: an action is viewed as a relation between the states of the world before
the action and the corresponding states after the action.

Here is the full definition. Let a non-empty domain D and a set of variables
VAR be given. Let a model M = 〈D, I〉 of signature Σ be given. Atomic
conditions π are of the form P (x0, · · · , xn−1), where P is in Σ of arity n.
Atomic resets ε are of the form ∃v, where v is a variable. The language of
predicate logic for Σ is given by:

φ ::= ⊥ | > | π | ε | φ · φ | ∼(φ).

Assignments are elements α, β, . . . , of ASS := DVAR. We define the rela-
tional meaning of the language, as follows:

• α[⊥]β :⇔ 0 6= 0.

• α[>]β :⇔ α = β.

• α[P (x0, · · · , xn−1)]β :⇔ α = β and 〈αx0, · · · , αxn−1〉 ∈ I(P ),
where P is a predicate symbol of Σ with arity n.

• α[∃v]β :⇔ α[v]β, where α[v]β iff αw = βw, for all variables w 6≡ v.

• α[φ · ψ]β :⇔ ∃γ α[φ]γ[ψ]β.

• α[∼(φ)]β :⇔ α = β and ∀γ ¬ α[φ]γ.

Truth is defined in terms of relational meaning:

α |= φ :⇔ ∃β α[φ]β.

We can define implication φ→ ψ as ∼(φ ·∼ψ). Applying the truth definition
to this gives:

α |= φ→ ψ :⇔ for all β : (α[φ]β ⇒ β |= ψ).
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Relational meaning also yields the following beautiful definition of dynamic
implication:

φ |= ψ :⇔ ∀α, β (α[φ]β ⇒ ∃γ β[ψ]γ).

This definition was first introduced by Hans Kamp in his pioneering paper
[Kam81]. Note that ∼φ is equivalent to (φ→ ⊥), and that (φ→ ψ) is true
iff φ |= ψ. We can define ∀x (φ) as (∃x→ φ).

A possible alternative notation for ∃v would be [v :=?] (random reset). This
emphasizes the connection with random assignment in programming.

The interpretations of predicate symbols are conditions. They are subsets of
the diagonal {〈α, α〉 | α ∈ ASS}. A condition is a test: it passes on what is
OK and throws away what is not OK, but it modifies nothing. The mapping
diag that sends a set F of assignments to a condition {〈α, α〉 | α ∈ F} is the
link between the classical and the dynamic world. E.g. the composition of
the diagonals of F and G is the diagonal of their intersection.

Ordinary Predicate Logic can be interpreted in DPL as follows. We suppose
that the predicate logical language has as connectives and quantifiers: >,
⊥, ∧, →, ∃x. We translate as follows:

• (·)∗ commutes with atomic formulas and with →

• (φ ∧ ψ)∗ := φ∗ · ψ∗

• (∃x(φ))∗ := ¬¬(∃x · φ∗)

We get that [φ∗] is the diagonal of the classical interpretation of φ. Our
translation is compositional. It shows that we may consider Predicate Logic
as a fragment of DPL.

It is, conversely, possible to translate any DPL-formula φ to a predicate
logical formula φ◦, such that the domain of [φ] is the classical interpretation
of φ◦. One of the ways to define this translation is by means of a precondition
calculus, with Floyd-Hoare rules [EdV92]. The following is a variation on
this. Take the language of standard predicate logic, with diamond modalities
〈ψ〉φ added, where ψ ranges over DPL formulas, with meaning α |= 〈ψ〉φ
if there is an assignment β with α[ψ]β, and β |= φ. Then the following
equivalences show that this extension does not increase expressive power.

• 〈⊥〉φ↔ ⊥.
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• 〈>〉φ↔ φ.

• 〈P (x1 · · ·xn)〉φ↔ (P (x1 · · ·xn) ∧ φ).

• 〈∃v〉φ↔ ∃vφ.

• 〈ψ1 · ψ2〉φ↔ 〈ψ1〉〈ψ2〉φ.

• 〈∼(ψ)〉φ↔ (¬(〈ψ〉>) ∧ φ).

So in a weak sense ‘nothing new happens in DPL’. We cannot define a set
that we cannot also define in Predicate Logic.

The equivalences for the modalities fix a translation (·)◦ that yields the
weakest precondition for achieving a given postcondition. As an example,
we compute 〈ψ〉>, where ψ is the Geach sentence (the weakest precondition
for success of the Geach sentence):

(〈(∃x · Fx · ∃y ·Dy ·Hxy)→ Bxy〉>)◦

⇔ (〈∼((∃x · Fx · ∃y ·Dy ·Hxy) · ∼Bxy)〉>)◦

⇔ ¬(〈(∃x · Fx · ∃y ·Dy ·Hxy) · ∼Bxy〉>)◦

⇔ · · ·
⇔ ¬∃x(Fx ∧ ∃y(Dy ∧Hxy ∧ ¬Bxy)).

The translation gives the Geach sentence its correct meaning, but it is not
compositional: the example illustrates that the way in which the existential
quantifier gets handled depends on whether it is in the scope of ∼.

6 Update Semantics, the Very Idea

Update semantics is a theory of meaning based on a very simple idea. We
start with a simple model of a hearer / receiver who receives items of in-
formation sequentially. At every moment the hearer is in a certain state:
she possesses certain information. This state is modified by the incoming
information in a systematic way. We now analyze the meaning of the in-
coming items as their contribution to the change of the information state of
the receiver. Thus, the meaning is seen as an action.

Note that the meanings are are in fact action types. They are not the
concrete changes of some given state into another, but what such concrete
changes have in common.
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The most abstract mathematical format for update semantics is as a transi-
tion system. We have a set of states and a set of labeled transitions between
these states. The meaning of a given item is modeled by the relation cor-
responding to a label that is assigned to the item. Here are two examples
of labeled transitions systems. The system A

a→ B
b→ C is a functional

transition system. The system D
a← A

a→ B
b→ C is non-functional. Note

the abstractness of the notion of state. Nothing has been said about what
states are, and this lack of commitment is intentional. Information states
are often called contexts, since the state is a precondition for the ‘interpreta-
tion’ of the informational item. Also the use of the word ‘context’ makes it
clear that we are not interested in the total state of the receiver but only in
aspects of it relevant to the kind of information we are focussing on. Thus,
meanings are often called context change potential in the dynamic tradition.

7 Updates on a Boolean Algebra

A very simple and appealing model is to consider updates on a Boolean
algebra (compare the entry: The Mathematics of Boolean Algebra), or,
more concretely, on the power set of a given sets of possibilities. Thus, we
have certain operations on our states available like conjunction / intersection
and negation / complement.

7.1 Semantics for Maybe

One realization of this idea is Frank Veltman’s Update Semantics for maybe.
See [Vel91], [Vel96]. Note that the discourse Maybe it is raining. It is not
raining is coherent. However, the discourse It is not raining. Maybe it is
raining is not. (We are assuming that the environment about which we
receive information does not change during the discourse.) The aim of Velt-
man’s Update Semantics is to analyze this phenomenon of non-commutativity.

The language of update semantics is that of propositional logic, with the
possibility operator ‘3’ added. This operator stands for ‘maybe’. Here
is the specification of the language, where ‘p’ ranges over of propositional
variables. We prefer a dot over the usual conjunction sign to stress that
conjunction means sequential composition in the order of reading.

• φ ::= ⊥ | > | p | φ · ψ | 3(φ) | ∼(φ).
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The interpretation is a simple extension of the ‘update perspective’ on propo-
sitional logic sketched above, where the update interpretations of proposi-
tional atoms, of negation, of conjunction and of disjunction were given. The
update interpretation of ‘maybe’ is given by:

Maybe statements are of the form 3φ. The corresponding up-
date action on the current context is to check whether an update
with φ in the context yields a non-empty set of possibilities. In
the affirmative case, the update with 3φ returns the whole con-
text, otherwise it returns the empty set.

For spelling this out more formally, we fix a Boolean algebra B. Inter-
pretations are functions from B to B. Let α be an assignment from the
propositional variables to the domain of B. We define, for s in B.

• [p]αs := (s ∧ α(p)).

• [φ · ψ]αs := ([φ]α · [ψ]α)s := [ψ]α[φ]αs.

• [3φ]αs :=
{
s if [φ]αs 6= ⊥
⊥ if [φ]αs = ⊥ .

• [∼φ]αs := s ∧ ¬([φ]αs).

Definition of truth in an information state:

s |=α φ :⇔ s ≤ [φ]αs.

Instead of s |=α φ we also say that φ is accepted in s.

Definition of consequence, relative to an assigmnent:

ψ |=α φ :⇔ ∀s [ψ]αs |= φ.

Consistency, relative to an assignment:

φ is consistent iff, for some state s, we have [φ]αs 6= ⊥.

Note that φ is consistent iff φ 6|=α ⊥,

We easily see that s |=α φ · ψ iff s |=α φ and s |=α ψ. So the difference
between Maybe it is raining. It is not raining and It is not raining. Maybe
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it is raining cannot be understood at the level of acceptance: none of the
two discourses is ever accepted. However, Maybe it is raining. It is not
raining is clearly consistent, where It is not raining. Maybe it is raining is
inconsistent.

If we drop the semantics for maybe, Veltman’s semantics collapses modulo
isomorphism into classical semantics, the relevant mappings being F 7→ F>
and p 7→ λs · (s ∧ p). These mappings spell out the relation between the
usual semantics for propositional logic and its update semantics.

7.2 Properties of Update Functions

Here are some important properties of update functions. The first and
second ones hold of updates that commute with (possibly finite) disjunctions.
The third one holds of updates that narrow down the range of possibilities.

• An update function f is finitely distributive iff f⊥ = ⊥ and, for any
s, s′, f(s ∨ s′) = fs ∨ fs′.

• An update function f is distributive iff f(
∨
X) =

∨
(fX), for any set

X of states. (So, distributivity means that f is an morphism of B to
itself, where B is considered as a complete upper semi lattice.)

• An update function f is eliminative or regressive iff, for any s, we have
fs ≤ s

Note that if a Boolean algebra is finite, then it is automatically complete.
Moreover in this case distributive and finitely distributive coincide. Here is
an example of an update function that is finitely distributive, but not dis-
tributive. Consider the Boolean Algebra of subsets of the natural numbers.
Take F (X) := > if X is infinite and F (X) = ⊥ if X is finite. Then, clearly
F is finitely distributive, but not distributive.

The update functions of Veltman that can be generated in his system for
maybe are eliminative, but not distributive. E.g., suppose ⊥ < s < > and
α(p) = s. Then, [3p]α(s∨¬s) = > and ([3p]α(s)∨[3p]α(¬s)) = (s∨⊥) = s.

We will see that the update functions associated DPL are distributive, but
not eliminative, due to the presence of ∃v. If we view eliminativity as an
explication of information growth, the non-eliminativity means that DPL
contains destructive updates. This is intuitively plausible, since ∃v does
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indeed throw away previous values stored under v. Full distributivity means
that the update functions can be considered as relations.

7.3 Dynamic Predicate Logic in Update Form

In Update Semantics for DPL, we represent information states as sets of as-
signments and we represent transitions as functions from sets of assignments
to sets of assignments.

Distributive update functions and relations over a given domain can be
correlated to each other in a quite general way. Let A be a non-empty set.
Let R range over binary relations on A and let F range over functions from
℘A to ℘A. We define:

• FR(X) := {y∈A | ∃x∈X xRy},

• xRF y :⇔ y ∈ F ({x}).

We can show that, if F is distributive, then FRF
= F and RFR

= R. We can
transform the relations of DPL to update functions via the mapping F(·).

Here is the direct definition. Let a non-empty domain D and a set of vari-
ables VAR be given. Let a model M = 〈D, I〉 of signature σ be given.
Atomic conditions π are of the form P (x0, · · · , xn−1), where P is in σ of
arity n. Atomic resets ε are of the form ∃v, where v is a variable. We repeat
the definition of the language of dynamic predicate logic for σ:

• φ ::= ⊥ | > | π | ε | φ · φ | ∼(φ).

A state is a set of assignments, i.e. of functions VAR→ D. We consider the
states as a complete Boolean algebra B with the usual operations.

Formulas φ of predicate logic are interpreted as update functions [φ], i.e. as
functions States→ States. We define:

• [⊥]s := ∅.

• [>]s := s.

• [P (x0, · · · , xn−1)]s := {α∈s | 〈αx0, · · · , αxn−1〉 ∈ I(P )},
where P is a predicate symbol of σ with arity n.
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• [∃v]s := {β | ∃α∈s α[v]β}, where α[v]β iff αw = βw, for all variables
w 6≡ v.

• [φ · ψ]s := [ψ][φ]s.

• [∼φ]s := {α∈s | [φ]{α} = ∅}.

The truth definition now takes the following shape:

s |= φ :⇔ ∀α∈s [φ]{α} 6= ∅.

And here is the definition of dynamic implication in its new guise:

φ |= ψ :⇔ ∀s [φ]s |= ψ.

7.4 Van Benthem’s Bottle

Johan van Benthem enclosed the dynamic fly in a static bottle by showing
that update semantics on a Boolean algebra collapses into classical semantics
if we demand both finite distributivity and eliminativity [Ben89].

This argument seems to show that the non-eliminativity of a relational se-
mantics like DPL is a necessary feature. The cost of distributivity is that
we accept destructive updates. After giving the argument we will indicate
the way out of the bottle in Subsection 7.5. Here is the argument.

Theorem 7.1 (van Benthem) Suppose we are given a Boolean algebra B
and an update function f over B. Suppose further that f is finitely distribu-
tive and eliminative. I.e.,

• f⊥ = ⊥, f(s ∨ s′) = fs ∨ fs′,

• fs ≤ s.

Then, we have fs = (s ∧ f>).

Proof

s ∧ f> = s ∧ f(s ∨ ¬s)
= s ∧ (fs ∨ f(¬s))
= (s ∧ fs) ∨ (s ∧ f(¬s))
= fs
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The map τ : f 7→ f>. is a bijection between finitely distributive and elimi-
native update functions and the elements of our Boolean algebra. Moreover,
for finitely distributive and eliminative f and g,

gfs = (fs ∧ g>) = ((s ∧ f>) ∧ g>) = (s ∧ (f> ∧ g>)).

So τ(gf) = τ(f) ∧ τ(g). One can also show that τ commutes with nega-
tion. Thus, τ is an isomorphism between finitely distributive and eliminative
updates with their intrinsic operations and B.

7.5 Dimensions of Information

We can escape the bottle by treating information as ‘more dimensional’.
Consider, e.g., the operation ∃x in DPL. This means intuitively:

Extend the information state with a discourse referent x.

This does not change the content of what the receiver knows in the worldly
sense, but it changes the algebra of possible propositions. Thus, it is rea-
sonable to say that this operation takes us to a different algebra.

This suggests the following setting. An update function is given by (i) a
canonical embedding E between Boolean algebras B0 and B1 and a mapping
f from B0 to B1. Here E tells us which proposition in the new algebra
contains the same worldly information as a proposition in the old one. The
salient (possible) properties of f now translate to:

• finite distributivity: f⊥0 = ⊥1, f(s ∨ s′) = fs ∨ fs′,

• distributivity: f
∨
X =

∨
{fx | x ∈ X},

• eliminativity: fs ≤1 Es.

In the new context, van Benthem’s theorem tells us that, if f is eliminative
and finitely distributive, then fs = (Es ∧ f>0). Thus, the modified result
shows that an eliminative and finitely distributive update function can be
completely characterized by the pair 〈E, f>0〉. This pair can be more or less
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considered as the semantic discourse representation structure, or semantic
drs, associated with f . So, in a sense, van Benthem’s result explains the
possibility of Discourse Representation Theory.

Frank Veltman, Jeroen Groenendijk en Martin Stokhof succeeded in inte-
grating update semantics for maybe and Dynamic Predicate Logic by realiz-
ing a two-dimensional semantics, where the elements of the relevant Boolean
algebras are sets of assignment/world pairs. The change in the algebras is
caused by the extension of the domains of the assignments: introducing a
discourse referent enlarges the storage capacity (see [GSV96]).

7.6 Introducing a Referent

What happens if we try to introduce a discourse referent, when it is already
present? This phenomenon is in fact the source of destructiveness of classical
DPL. The imagined situation is deeply unnatural. How can one intend to
introduce a new referent and fail at the job? From the technical point
of view there are many ways to handle the problem. A first way is to
simply forbid the occurrence of such a repeated introduction. This amounts
to introducing a constraint on syntax. This way is embodied in versions
of Discourse Representation Theory: the drs-construction algorithm always
invites us to choose a fresh variable letter when a new discourse referent is
needed.

A second way is to store a stack of objects under every variable letter.
In this way one obtains versions of Vermeulen’s Sequence Semantics. See
[Ver93a]. One could view Vermeulen’s idea either as ‘different objects under
one referent’ or as ‘different referents under one variable name’. See below.

The most satisfactory way, is to say that the imagined occurrence of double
introduction is an instance of the fallacy of misplaced concreteness. It rest
on the confusion of the discourse referent and its label, or, to change the
simile, it confuses the file and a pointer to the file. Only the label could
already be present. The referent is new ex stipulatione.

Again there are various ways of handling a situation of overloading of la-
bels/pointers. For example, we could say that in case of a clash, the new
referent will win and the old referent will loose it label. This gives us Ver-
meulen’s Referent Systems. See [Ver95]. Alternatively we could let the old
referent win. This possibility is embodied in Zeevat’s compositional version
of Discourse Representation Theory (see [Zee91]). Finally, we could allow
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referents to share a label. Vermeulen’s Sequence Semantics can be viewed
as one way of implementing this idea.

Frank Veltman, Jeroen Groenendijk and Martin Stokhof in their [GSV96]
use one version of referent systems in their integration of Update Semantics
for maybe and Dynamic Predicate Logic.

8 Dynamic Semantics and Presupposition

We have looked at anaphora and at epistemic modalities. Other natu-
ral language phenomena with a dynamic flavour are presuppositions, and
assumption-introducing expressions like ‘suppose’. This section sketches a
dynamic perspective on presuppositions.

8.1 Different Styles

Dynamic logic comes in various flavours, the main distinction being that
between single-storey and dual-storey architectures. In the single-storey
approach everything is dynamic, and therefore formulas denote relations.
In the dual-storey approach there is a level of state changes and a level of
states, and it is possible to move back and forth between the two levels.
An example of a switch from the state change level to the state level is the
postcondition operator, which gives the postcondition of a state change for
some initial condition. Another operator is the precondition operator, which
gives the (weakest) precondition of a state change for a given postcondition.
Below we give an example of a dual-storey approach, with precondition
operators. It is not hard to work out a single-storey version or a version
with postcondition operators.

Pragmatic accounts of presupposition and presupposition projection were
given by Karttunen [Kar73, Kar74] and Stalnaker [Sta72, Sta74]. These
authors proposed an explanation for the fact that the presupposition of a
conjunction φ and ψ consists of the presupposition of φ conjoined with the
implication assφ → presψ. When a speaker utters this conjunction, she may
take it for granted that the audience knows φ after she has uttered this first
conjunct. So even if φ is not presupposed initially, it will be presupposed by
the time she gets to assert ψ, for now the context has shifted to encompass
φ.
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Various authors have tried to make the idea of shifting context precise,
most notably Heim [Hei83b]. Presupposition projection has been a major
topic in dynamic semantics of natural language ever since [Bea01]. Formal
accounts of presupposition within the DRT framework (e.g., [San92], or
the textbook treatment based on this in [BBar]) combine the dynamics for
setting up appropriate contexts for anaphoric linking with the dynamics
for presupposition handling and presupposition accommodation. Although
anaphora resolution and presupposition handling have things in common, we
will treat them as orthogonal issues. For a dissenting voice on the marriage
of dynamic semantics and presupposition handling, see [Sch07].

8.2 Presuppositions Failure and Error Transitions

Presupposition failures are errors that occur during the left to right process-
ing of a natural language text. On the assumption that sequential processing
changes context dynamically, a dynamic account of presupposition failure
models presupposition failure as transition to an error state.

So we postulate the existence of an error state, and we say that a process
‘aborts’ (or: ‘suffers from presupposition failure’) in a given context if it
leads to the error state from that context.

Propositional Dynamic Error Logic is a logic of formulas and programs that
is interpreted in labeled transition systems over a state set that includes the
error state error.

Let P be a set of proposition letters.

Formulas
φ ::= > | p | ¬φ | φ1 ∧ φ2 | E(π) | 〈π〉φ | [π]φ

Programs
π ::= abort | φ? | π1;π2 | π1 ∪ π2

Abbreviations:

⊥ :≡ ¬>
φ1 ∨ φ2 :≡ ¬(¬φ1 ∧ ¬φ2)
φ1 → φ2 :≡ ¬(φ1 ∧ ¬φ2)

Let M be a pair (S, V ) with error ∈ S (the set of states includes the error
state) and V : P → P(S − {error}) (the valuation assigns a set of proper

22



states to every proposition letter in P ). Interpretation of formulas and
programs by mutual recursion.

All relational meanings will be subsets of S × S, with two additional prop-
erties:

1. (error, error) is an element of every relational meaning,

2. (error, s) ∈ R implies s = error.

The composition R;T of two relations R and T is defined in the usual way:

R;T := {(s, s′) | ∃s′′ ∈ S : (s, s′′) ∈ R and (s′′, s′) ∈ T}.

Note that it follows from the definition and the properties of R and T that
R;T will also have these properties. In particular, (error, s) ∈ R;T implies
s = error. In other words, there is no recovery from error.

In the truth definition we assume that s is a proper state.

M, s |= > always
M, s |= p :≡ s ∈ V (p)

M, s |= ¬φ :≡ not M, s |= φ

M, s |= φ1 ∧ φ2 :≡ M, s |= φ1 and M, s |= φ2

M, s |= E(π) :≡ (s, error) ∈ [[π]]M

M, s |= 〈π〉φ :≡ there is an s′ ∈ S − {error}
with (s, s′) ∈ [[π]]M and M, s′ |= φ

[[abort]]M := {(s, error) | s ∈ S}
[[φ?]]M := {(s, s) | s ∈ S − {error} and M, s |= φ} ∪ {(error, error)}

[[π1;π2]]M := [[π1]]M ; [[π2]]M

[[π1 ∪ π2]]M := [[π1]]M ∪ [[π2]]M .

This language has an obvious axiomatisation: the axioms of propositional
logic, an axiom stating the relation between program diamonds and boxes,

〈π〉¬φ↔ ¬[π]φ

the distribution axiom for programs

[π](φ1 → φ2)→ [π]φ1 → [π]φ2
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the reduction axioms for sequential composition, choice and test:

〈π1;π2〉φ ↔ 〈π1〉〈π2〉φ
〈π1 ∪ π2〉φ ↔ 〈π1〉φ ∨ 〈π2〉φ
〈φ1?〉φ2 ↔ φ1 ∧ φ2

reduction axioms for error behaviour of composition, choice and test:

E(π1;π2) ↔ E(π1) ∨ 〈π1〉E(π2)
E(π1 ∪ π2) ↔ E(π1) ∨ E(π2)

E(φ?) ↔ ⊥

the axiom stating that abort leads to error and to no other state,

E(abort) ∧ [abort]⊥

and the rules of inference modus ponens (from φ1 and φ1 → φ2 infer φ2)
and program necessitation (from φ infer [π]φ).

Let us see now how this applies to presupposition projection, Given a pair of
formulas consisting of a presupposition pres and an assertion ass, the general
recipe of forging a program from this is by means of

(¬pres?; abort) ∪ ass?

This uses the toolset of dynamic logic (compare the entry: Propositional
Dynamic Logic) to enforce the desired behaviour: if the presupposition is
not fulfilled the program aborts and otherwise the program behaves as a
test for the assertion.

Apply this to the case of being a bachelor. The presupposition is being male
and being adult (say m∧a), and the assertion is being unmarried, for which
we use n. According to the recipe above the program bachelor is defined
as

(¬(m ∧ a)?; abort) ∪ n?.

Similarly, being male has presupposition > and assertion m, so the program
male is defined as ⊥?; abort∪m?, which reduces to m?. What this says is
that male is a program without presupposition (the program never aborts),
whereas bachelor does have a presupposition (the program aborts if the
test m ∧ a fails).
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To get the assertion back from a program π, we can use

〈π〉>

which gives the conditions under which the program has at least one tran-
sition that does not lead to error. Here is a proof, for a program π of the
form (¬pres?; abort) ∪ ass?:

〈(¬pres?; abort) ∪ ass?〉> ≡ 〈¬pres?; abort〉> ∨ 〈ass?〉>
≡ 〈¬pres?〉〈abort〉> ∨ ass
≡ 〈¬pres?〉⊥ ∨ ass
≡ (¬pres ∧ ⊥) ∨ ass
≡ ass

To get the presupposition, we can use

¬E(π)

which gives the conditions under which the program will not have a transi-
tion to error. Here is a proof:

E((¬pres?; abort) ∪ ass?) ≡ E(¬pres?; abort) ∨ E(ass?)
≡ E(¬pres?) ∨ 〈¬pres?〉abort) ∨ ⊥
≡ ⊥ ∨ 〈¬pres?〉E(abort) ∨ ⊥
≡ 〈¬pres?〉E(abort)
≡ ¬pres ∧ >
≡ ¬pres

It follows that ¬E((¬pres?; abort) ∪ ass?) ≡ pres.

Now consider the composition male; bachelor, the result of first uttering
male, and next bachelor. The assertion of this composed utterance is:

〈male; bachelor〉> ≡ 〈male〉〈bachelor〉>
≡ 〈male〉n
≡ m ∧ n.

Its presupposition is

¬E(male; bachelor) ≡ ¬E(male) ∧ ¬〈male〉E(bachelor)
≡ > ∧ [male]¬E(bachelor)
≡ m→ (m ∧ a)
≡ m→ a.
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program π1;π2

assertion assπ1 ∧ assπ2

presupposition presπ1
∧ (assπ1 → presπ2

)

Figure 1: Projection table for sequential composition.

program not π
assertion ¬assπ
presupposition presπ

Figure 2: Projection table for negation.

The problem of presupposition projection, for our language of programs with
error abortion, is to express the presupposition of π in terms of presupposi-
tions and assertions of its components. For that, it is useful to define assπ
as 〈π〉> (or, equivalently, as ¬[π]⊥), and presπ as ¬E(π).

It is a simple logical exercise to express the assertion and presupposition of
π1;π2 in terms of the assertions and presuppositions of its components. The
result is in Table 1.

What does it mean to negate a program π? The most straightforward re-
quirement is let not π be a test that succeeds if π fails, and that aborts
with error if π aborts. The following definition of not π implements this:

not π :≡ (E(π)?; abort) ∪ ([π]⊥)?

Using this to work out the meaning of not bachelor, we get:

not bachelor ≡ (E(bachelor)?; abort) ∪ ([bachelor]⊥)?
≡ (¬(m ∧ a)?; abort) ∪ ([bachelor]⊥)?
≡ (¬(m ∧ a)?; abort) ∪ ¬n?

Again, it is a simple logical exercise to express the assertion and presuppo-
sition of not π in terms of assertion and presupposition of its component π.
See Table 2.

The implication of π1 ⇒ π2 has as natural definition not (π1; not π2), and
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program π1 ⇒ π2

assertion assπ1 → assπ2

presupposition presπ1
∧ (assπ1 → presπ2

)

Figure 3: Projection table for implication.

its projection behaviour can be worked out from this definition.

〈π1 ⇒ π2〉> ≡ 〈not (π1; not π2)〉>
≡ ¬〈π1; not π2〉>
≡ ¬〈π1〉〈not π2〉>
≡ ¬〈π1〉¬〈π2〉>
≡ [π1]〈π2〉>
≡ [π1]assπ2

≡ [¬presπ1
?; abort ∪ assπ1?]assπ2

≡ [¬presπ1
?; abort]assπ2 ∧ [assπ1?]assπ2

≡ [¬presπ1
?][abort]assπ2 ∧ [assπ1?]assπ2

≡ ¬presπ1
→ >∧ [assπ1?]assπ2

≡ [assπ1?]assπ2

≡ assπ1 → assπ2

The calculation of presupposition failure conditions:

E(π1 ⇒ π2) ≡ E(not (π1; not π2))
≡ E(π1; not π2)
≡ E(π1) ∨ 〈π1〉E(not π2)
≡ E(π1) ∨ 〈π1〉E(π2)
≡ ¬presπ1

∨ (assπ1 ∧ ¬presπ2
)

It follows that pres(π1 ⇒ π2) ≡ ¬E(π1 ⇒ π2) ≡ presπ1
∧ (assπ1 → presπ2

).
Table 3 gives the projection table for implication.

Applying this to the example of bachelorhood we get, using the facts that
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program π1 or π2

assertion assπ1 ∨ (presπ1
∧ assπ2)

presupposition presπ1
∧ (¬assπ1 → presπ2

)

Figure 4: Projection table for (sequential) disjunction.

assmale ≡ m, presmale ≡ >, assbachelor ≡ n and presbachelor ≡ m ∧ a:

male⇒ bachelor

≡ not (male; not bachelor)
≡ (m→ ¬(m ∧ a)?; abort ∪ (m→ n)?
≡ (m→ ¬a)?; abort ∪ (m→ n)?

Finally, what does it mean to process two programs π1 and π2 disjunctively?
Taking linear order into account, one proceeds one by one: first execute π1;
if this succeeds then done, otherwise execute π2. This leads to the following
definition of π1 or π2:

π1 or π2 :≡ π1 ∪ (not π1;π2).

Again we apply this to our running example:

male or bachelor

≡ male ∪ (not male; bachelor)
≡ male ∪ (¬m?; bachelor)
≡ male ∪ (¬m?; abort)

The projection table for this is given in Table 4.

8.3 Presupposition Accommodation

In many cases where a presupposition of an utterance is violated, the ut-
terance is nevertheless understood. This is called presupposition accom-
modation: the audience implicitly understands the presupposition as an
additional assertion.

In our technical framework, we can define an operation ACC mapping utter-
ances π to ACC(π) by accommodating their presuppositions. The definition
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of ACC is given by
ACC(π) := presπ?; assπ?

For the running example case of bachelor, we get:

ACC(bachelor) = (m ∧ a)?;n?

The presupposition of ACC(π) is always >.

8.4 Presuppositions and Dynamic Epistemic Logic

Epistemic logic, the logic of knowledge, is a branch of modal logic where the
modality ‘i knows that’ is studied (compare the entries: Epistemic Logic,
The Logic of Belief Revision). The dynamic turn in epistemic logic, which
took place around 2000, introduced a focus on change of state, but now with
states taken to be representations of the knowledge of a set of agents.

If we fix a set of basic propositions P and a set of agents I, then a knowledge
state for P and I consists of a set W of possible worlds, together with a
valuation function V that assigns a subset of P to each w in W (if w ∈W ,
then V (w) lists the basic propositions that are true in w) and for each agent
i ∈ I, a relation Ri stating the epistemic similaries for i (if wRiw′, this
means that agent i cannot distinguish world w from world w′). Epistemic
models M = (W,V, {Ri | i ∈ I}) are known as multimodal Kripke models.
Pointed epistemic models are epistemic models with a designated world w0

representing the actual world.

What happens to a given epistemic state (M,w0) = ((W,V, {Ri | i ∈ I}), w0)
if a public announcement φ is made? Intuitively, the world set W of M is
restricted to those worlds w ∈W where φ holds, and the valuation function
V and epistemic relations Ri are restricted accordingly. Call the new model
M | φ. In case φ is true in w0, the meaning of the public announcement φ
can be viewed as a map from (M,w0) to (M | φ,w0). In case φ is false in
w0, no update is possible.

Veltman’s update logic can be accommodated in public announcement logic
(compare the entry: Common Knowledge) by allowing public announce-
ments of the form 3φ, where the modality is read as reachability under
common knowledge. If an S5 knowledge state for a set of agents (compare
the entry: Epistemic Logic) is updated with the public announcement 3φ,
then in case φ is true somewhere in the model, the update changes nothing
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(for in this case M | 3φ equals M), and otherwise the update yields incon-
sistency (since public announcements are assumed to be true). This is in
accordance with the update logic definition.

The logical toolbox for epistemic logic with communicative updates is called
dynamic epistemic logic or DEL. DEL started out from the analysis of the
epistemic and doxastic effects of public announcements [Pla89, Ger99]. Pub-
lic announcement is interesting because it creates common knowledge. There
is a variety of other kinds of announcement — private announcements, group
announcements, secret sharing, lies, and so on — that also have well-defined
epistemic effects. A general framework for a wide class of update actions was
proposed in [BMS99] and [BM04]. A further generalization to a complete
logic of communication and change, with enriched actions that allow chang-
ing the facts of the world, is provided in [BvEK06]. A textbook treatment
of dynamic epistemic logic is given in [DvdHK06].

To flesh out what “transition to an error state” means one may represent
the communicative situation of a language utterance with presupposition
in more detail, as follows. Represent what a speaker assumes about her
audience knows or believes, in a multi-agent belief (or knowledge) state,
and model the effect of the communicative action on the belief state.

A simple way to handle utterances with presupposition in dynamic epis-
temic logic is by modelling a presupposition P as a public announcement
“it is common knowledge that P”. In cases where it is indeed common
knowledge that P , an update with this information changes nothing. In
cases where P is not common knowledge, however, the utterance is false,
and public announcements of falsehoods yield an inconsistent knowledge
state: the analogue of the error state in Subsection 8.2 above.

9 Encoding Dynamics in Typed Logic

Compositionality has always been an important concern in the use of log-
ical systems in natural language semantics (see the entry: Compositional-
ity). Through the use of higher order logics (see the entries: Second-order
and Higher-order Logics, Church’s Type Theory) a thoroughly composi-
tional account of, e.g., the quantificational system of natural language can
be achieved, as is demonstrated in classical Montague Grammar [Mon74a,
Mon74b, Mon73] (compare the entry: Logical Form). We will review how
the dynamic approach can be extended to higher order systems. The link

30



between dynamic semantics and type theory is more like a liaison than a
stable marriage: there is no intrinsic need for the connection. The connec-
tion is treated here to explain the historical influence of dynamic semantics
on Montague grammar.

Most proposals for dynamic versions of Montague grammar develop what are
in fact higher order versions of Dynamic Predicate Logic (DPL). This holds
for [GS90, Chi92, Mus95, Mus96, Mus94, Eij97, EK97, KKP96, Kus00].
These systems all inherit a feature (or bug) from the DPL approach: they
make re-assignment destructive. DRT does not suffer from this problem: the
discourse representation construction algorithms of [Kam81] and [KR93] are
stated in terms of functions with finite domains, and carefully talk about
‘taking a fresh discourse referent’ to extend the domain of a verifying func-
tion, for each new noun phrase to be processed.

In extensional Montague grammar ‘a man’ translates as:

λP∃x(man x ∧ Px).

Here P , of type e → t, is the variable for the VP slot: it is assumed that
VPs denote sets of entities.

In Dynamic Montague Grammar (DMG) in the style of [GS90], the transla-
tion of an indefinite NP does introduce an anaphoric index. The translation
of ‘a man’ would look like

λPλaλa′.∃x(man x ∧ Pui(ui|x)aa′).

Instead of the basic types e and t of classical extensional Montague grammar,
DMG hass basic types e, t and m (m for marker). States pick out entities
for markers, so they can be viewed as objects of type m→ e. Abbreviating
m→ e as s (for ‘state’), we call objects of type s→ s→ t state transitions.
The variable P in the DMG translation of ‘a man’ has type m→ s→ s→ t,
so VP meanings have been lifted from type e→ t to this type. Note that→
associates to the right, so m→ s→ s→ t is shorthand for m→ (s→ (s→
t)).

Indeed, DMG can be viewed as the result of systematic replacement of en-
tities by markers and of truth values by state transitions. A VP meaning
for ‘is happy’ is a function that maps a marker to a state transition. The
state transition for marker ui will check whether the input state maps ui to
a happy entity, and whether the output context equals the input context.

31



The variables a, a′ range over states, and the expression (ui|x)a denotes
the result of resetting the value of ui in a to x, so the old value of ui gets
destroyed (destructive assignment).

The anaphoric index i on reference marker ui is introduced by the transla-
tion. In fact, the translation starts from the indexed indefinite noun phrase
‘a mani’.

An alternative treatment is given in Incremental Typed Logic (ITL), an
extension to typed logic of a ‘stack semantics’ that is based on variable free
indexing and that avoids the destructive assignment problem. The basic
idea of the stack semantics for DPL, developed in [Ver93b], is to replace
the destructive assignment of ordinary DPL, which throws away old values
when resetting, by a stack valued one, that allows old values to be re-used.
Stack valued assignments assign to each variable a stack of values, the top
of the stack being the current value. Existential quantification pushes a new
value on the stack, but there is also the possibility of popping the stack, to
re-use a previously assigned value. ITL [Eij00] is in fact a typed version of
stack semantics, using a single stack.

Assuming a domain of entities, contexts are finite lists of entities. If c is a
context of length n, then we refer to its elements as c[0], . . . , c[n − 1], and
to its length as |c|. We will refer to the type of contexts of length i as [e]i.
If c is a context in [e]i, then objects of type {0, .., i− 1} can serve as indices
into c. If c ∈ [e]i and j ∈ {0, .., i− 1}, then c[j] is the object of type e that
occurs at position j in the context.

A key operation on contexts is extension with an element. If c :: [e]i and
x :: e (c is a context of length i and x is an entity) then ĉ x is the context
of length i + 1 that has elements c[0], . . . , c[i − 1], x. Thus ˆ is an operator
of type [e]i → e→ [e]i+1.

Also note that types like [e]i are in fact polymorphic types, with i acting as
a type variable. See [Mil78].

In ITL there is no destructive assignment, and indefinite noun phrases do
not carry indexes in the syntax. The ITL translation of ‘a man’ picks up an
index from context, as follows:

λPλcλc′.∃x(man x ∧ P |c|(ĉ x)c′).

Here P is a variable of type {0, .., i} → [e]i+1 → [e]j → t, while c is a
variable of type [e]i representing the input context of length i, and c′ is a
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variable of type [e]j representing the output context. Note that the type
{0, .., i} → [e]i+1 → [e]j → t for P indicates that P first takes an index
in the range {0, .., i}, next a context fitting this range (a context of length
i+ 1), next a context of a yet unknown length, and then gives a truth value.
P is the type of unary predicates, lifted to the level of context changers,
as follows. Instead of using a variable to range over objects to form an
expression of type e, a lifted predicate uses a variable ranging over the size
of an input context to form an expression that denotes a changer for that
context.

The ITL translation of ‘a man’ has type ({0, .., i} → [e]i+1 → [e]j → t) →
[e]i → [e]j → t. In P |c|(ĉ x)c′, the P variable marks the slot for the VP
interpretation; |c| gives the length of the input context to P ; it picks up the
value i, which is the position of the next available slot when the context
is extended. This slot is filled by an object x denoting a man. Note that
ĉ x[|c|] = ĉ x[i] = x, so the index i serves to pick out that man from the
context.

To see that a dynamic higher order system is expressible in ITL, it is enough
to show how to define the appropriate dynamic operations. Assume φ and
ψ have the type of context transitions, i.e. type [e]→ [e]→ t (using [e] for
arbitrary contexts), and that c, c′, c′′ have type [e]. Then we can define the
dynamic existential quantifier, dynamic negation and dynamic composition
as follows:

E := λcc′.∃x(ĉ x = c′)
∼φ := λcc′.(c = c′ ∧ ¬∃c′′φcc′′)

φ ; ψ := λcc′.∃c′′(φcc′′ ∧ ψc′′c′)

Dynamic implication,⇒, is defined in the usual way, by means of ∼(φ ; ∼ψ).

10 Conclusion

Hopefully, the above has given the reader a sense of Dynamic Semantics
as a fruitful and flexible approach to meaning and information processing.
Dynamic semantics comes with a set of flexible tools, and with a collec-
tion of ‘killer applications’, such as the compositional treatment of Donkey
sentences, the account of anaphoric linking, the account of presupposition
projection, and the account of epistemic updating. It is to be expected that
advances in dynamic epistemic logic will lead to further integration. Taking

33



a broader perspective, dynamic semantics can be viewed as the application
of dynamic epistemic logic in natural language semantics, although this is
controversial.
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